是多元分析的Fisher判别吧
Fisher判别的基本思路就是投影,针对P维空间中的某点x=(x1,x2,x3,…,xp)寻找一个能使它降为一维数值的线性函数y(x):
y(x)= ∑Cjxj
然后应用这个线性函数把P维空间中的已知类别总体以及求知类别归属的样本都变换为一维数据,再根据其间的亲疏程度把未知归属的样本点判定其归属。这个线性函数应该能够在把P维空间中的所有点转化为一维数值之后,既能最大限度地缩小同类中各个样本点之间的差异,又能最大限度地扩大不同类别中各个样本点之间的差异,这样才可能获得较高的判别效率。在这里借用了一元方差分析的思想,即依据组间均方差与组内均方差之比最大的原则来进行判别。
具体的介绍太多了,电脑上打不了,你去下载一本多元分析的电子书吧。
Hadoop|
Apache Pig|
Apache Kafka|
Apache Storm|
Impala|
Zookeeper|
SAS|
TensorFlow|
人工智能基础|
Apache Kylin|
Openstack|
Flink|
MapReduce|
大数据|
云计算|
用户登录
还没有账号?立即注册
用户注册
投稿取消
文章分类: |
|
还能输入300字
上传中....